Skip to content
Reliable Data A Core Underpinning Of Artificial Intelligence Blog

Reliable data – a core underpinning of Artificial Intelligence

Artificial Intelligence (AI) is possibly the hottest of hot topics at the moment, particularly when it comes to reliable data.  What makes headlines is AI’s combination of wonderful potential applications; everything from curing cancer to driver-less cars, and a potentially terrifying loss of human control in which doomsday scenarios proliferate.

While the upsides seem evident, many people in business are concerned about AI, as they don’t know how it works and in effect, can’t see inside the box.   This then leads to questions of trust and thereby to the ethics of the applications.

Neural networks, algorithms, the ability of machines to learn are pretty complex and can be esoteric.  That said, one thing that is generally straightforward is the data that is being applied.

And it seems just like in every other data-driven dimension of our world, reliable data is the key to successful AI.

Businesswoman And Reliable Data

At Data Agility we’ve long used the term ‘reliable data’ rather that ‘accurate data’, ‘trustworthy data’ or anything else to describe what data people are seeking to use.  When we spoke with our clients, our research showed that people wanted data they could rely on to make decisions.  Reliability took out absolute standards of accuracy and trustworthiness.

In our day-to-day lives, humans are generally very good at filtering out rubbish data, and the majority of us bring natural statistical skills to our lives which help us through the day.   Similarly, many AI solutions can behave in a comparable way IF there is an understanding of the quality of the data at the outset; that it is reliable data.  If this understanding exists, then training routines can be established that allow the AI identify valid patterns in the data.

From there, the AI can determine what to do, within its preset parameters, with the patterns it observes.   And from there it can continue to learn and deliver useful outcomes.

However, without this baseline data quality understanding there are very real risks of the old fashioned rubbish-in-rubbish-out model being repeated.

So, if you want to implement AI in your business or you are talking to an AI vendor, make sure that you get to the bottom of what data you/they will use and deeply understand the reliability of your data.

Understand how data reliability affects your business

Data Agility are leaders in data strategy and can help your business understand the impact of unreliable data. Contact us today for a no obligation discussion about your data needs.

For more information, please contact:

Robert D’Astolto

Head of Data and Analytics

Data Agility

Tel: +61 3 8646 3333


About Iain Kiernan

Iain is a Director of Data Agility. Prior to joining Data Agility, he held senior positions with ANZ and KPMG Consulting where he gained substantial strategic customer, business, data, technology and management experience. He was educated at Middlesex University and Birkbeck College, University of London. He is Fellow of the Australian Institute of Management. His focus is as an adviser on the information management and analytics strategy, organisation transformation and the application of data to Chief Officer's of Australian organisations.

Leave a Comment

Scroll To Top